A Model-Agnostic Graph Neural Network for Integrating Local and Global Information
Abstract
Graph neural networks (GNNs) have achieved promising performance in a variety of graph focused
tasks. Despite their success, the two major limitations of existing GNNs are the capability
of learning various-order representations and providing interpretability of such deep learning-based
black-box models. To tackle these issues, we propose a novel Model-agnostic Graph Neural
Network (MaGNet) framework. The proposed framework is able to extract knowledge from
high-order neighbors, sequentially integrates information of various orders, and offers explanations
for the learned model by identifying influential compact graph structures. In particular, MaGNet
consists of two components: an estimation model for the latent representation of complex
relationships under graph topology, and an interpretation model that identifies influential nodes,
edges, and important node features. Theoretically, we establish the generalization error bound for
MaGNet via empirical Rademacher complexity and showcase its power to represent the layer-wise
neighborhood mixing. We conduct comprehensive numerical studies using both simulated data
and a real-world case study on investigating the neural mechanisms of the rat hippocampus,
demonstrating that the performance of MaGNet is competitive with state-of-the-art methods.
Bio:
Annie Qu
Chancellor’s Professor, Department of Statistics, University of California Irvine
Ph.D., Statistics, the Pennsylvania State University
Qu’s research focuses on solving fundamental issues regarding structured and unstructured large-scale data, and developing cutting-edge statistical methods and theory in machine learning and algorithms on personalized medicine, text mining, recommender systems, medical imaging data and network data analyses for complex heterogeneous data. The newly developed methods are able to extract essential and relevant information from large volume high-dimensional data. Her research has impacts in many fields such as biomedical studies, genomic research, public health research, social and political sciences.
Before she joins the UC Irvine, Dr. Qu is Data Science Founder Professor of Statistics, and the Director of the Illinois Statistics Office at the University of Illinois at Urbana-Champaign. She was awarded as Brad and Karen Smith Professorial Scholar by the College of LAS at UIUC, a recipient of the NSF Career award in 2004-2009. She is a Fellow of the Institute of Mathematical Statistics, a Fellow of the American Statistical Association, and a Fellow of American Association for the Advancement of Science. She is also a recipient of Medallion Award and Lecturer. She is JASA Theory and Methods co-editor in 2023-2025.